Authors: Michael S. Manak1, Wendell R. Su1, Andrew Min1, Brad J. Hogan1, Matthew J. Whitfield1, Jonathan S. Varsanik1, Delaney Berger1, Mani Foroohar1, Kimberly M. Rieger-Christ2, Travis B. Sullivan2, Naveen Kella3, Ray Hernandez3, Vladimir Mouraviev4, Kevin B. Knop5, Hani H. Rashid6, David M. Albala4, Grannum R. Sant1 Ashok C. Chander1.

1Cellanyx Diagnostics, Beverly, MA, 2Lahey Hospital and Medical Center, Burlington, MA, 3The Urology and Prostate Institute, San Antonio, TX, 4Associated Medical Professionals of New York, Syracuse, NY, 5California Pacific Medical Center, San Francisco, CA, 6University of Rochester Medical Center School of Medicine and Dentistry, Rochester, NY, 7Tufts University School of Medicine, Boston, MA.

\textbf{Title:} A novel live cell diagnostic platform measuring phenotypic biomarkers using objective algorithmic analysis enables further risk stratification for intermediate-risk prostate cancer patients.

Due to the inconsistencies of existing molecular, genomic, and pathophysiologic markers for patient risk stratification, effective prostate cancer diagnostics and treatment remains a challenge in clinical practice. Therefore, the development of a diagnostic platform that differentiates cancer patients who have clinically significant disease from those who have a low risk of progression is an important area of interest. In this study, we tested a diagnostic platform that combines a scalable microfluidic device, enabling an automated live cell assay, that measures \textit{phenotypic biomarkers} [as defined here as functional biophysical and molecular biomarkers], via objective machine vision algorithms to evaluate both local invasive and metastatic potential of prostate cancer.

An analytical validation study was performed on fresh prostate cancer samples (n=100) obtained at the time of radical prostatectomy (RP). The diagnostic platform enables: 1) growth of patient cells \textit{ex vivo} on extra cellular matrix formulations supporting adhesion/survival for 72 hours post biopsy 2) high-throughput imaging of multiple \textit{phenotypic biomarkers} such as morphology, cytoskeleton dynamics, and protein subcellular localization & modification states and 3) objective quantification of biomarkers via machine vision analysis. Patient samples were imaged over a three hour period capturing live-cell biophysical biomarkers. After three hours cells were fixed and stained for molecular biomarkers. Machine vision technology was then utilized to analyze \textit{phenotypic biomarkers} to yield specific metrics (Oncogenic potentials and Metastatic potentials (OP and MP)), that correlated with RP specimen pathologic findings.

Analysis of quantified \textit{phenotypic biomarkers} distinguished normal from cancer cells. Interestingly, OP and MP metrics demonstrated statistical significance in distinguishing Gleason 6 from Gleason 7 prostate cancer with 85\% sensitivity and 80\% specificity (n=100) and concordance with relevant RP pathology findings.

In conclusion, OP and MP derived from defined \textit{phenotypic biomarker} metrics, demonstrate the ability to differentiate Gleason 6 and 7 scores and correlate with, 1) seminal vesicle invasion, 2) positive RP surgical margins, 3) vascular Invasion, and 4) lymph node involvement. This novel functional-live-cell diagnostic platform allows for the measurement of a biomarker panel that further stratify patients to improve prostate cancer treatment, clinical decision-making, further risk stratify intermediate prostate cancer populations, and potentially predict actionable pathological findings.